菜单导航

快,就是效率!走进手机快充的世界!

作者: 星座屋 发布时间: 2019年10月05日 15:39:08

据称,2019年的新iPhone终于要抛弃祖传的五福一安(5V/1A)的充电头了。毕竟如果你用标配的“五福一安”给你的iPhoneXs Max充电要210分钟才能充满。而别人家的孩子安卓的最好成绩普遍在一小时之内。

快,就是效率!走进手机快充的世界!

当然别人家的孩子的成绩也不是一天提高的,自2013年高通推出QC快充 (Quick Charge)之后,安卓快充技术的发展便驶上了一条快车道,各类技术和标准层出不穷,手机的充电时间不断刷新极限。在搞清快充之前我们首先要知道电池是怎么充电的。

锂电池充电一般经过预充电、恒流充电和恒压充电3个阶段。在预充电阶段电池电压低、活性差、内阻较大,只能接受较小的充电电流;随着电池电压的上升,电池活性变强,内阻变小,可以接受较大的充电电流(电池容量的70%基本上都是在恒流阶段充得的);当电池电压上升至截止电压附近时,系统电压便不再上升,充电电流自动减少,直至电池充满。

快,就是效率!走进手机快充的世界!

手机用检测到的电池电压来显示剩余电量,如电池电压为4.4V时表示电量为100%,电压为3.6V时表示电量为0%,手机自动关机。

如何实现快充?

充电时间=电池容量/充电电流*系数,缩短充电时间最直接的方法就是增加恒流充电电流。想要提高电流,充电头的输出功率(手机的输入功率)就要提高。所以近年来手机充电头的输出功率从5W、10W、18W一路提升至,VIVO更是在9012年发布了120W快充技术。

那么如何提高充电头输出功率? 功率P=U*I,提高功率要么提高电压,要么提高电流,要么两者同时提高。业界因此先后演化出了高压快充、低压快充、电荷泵快充三种方案。

1.高压快充

2013年高通发布QC1.0,将充电功率率先提升至9W(5V/1.8A),转年推出进阶版QC2.0,进一步提升充电功率至18W(9V/2A或12V/1.5A),从此奠定了自己在高压快充领域领导者的地位。

高通选择高压快充方案其实是有原因的。在2014年前后,那时安卓手机的主流充电接口还是MicroB,而MicroB支持的最大充电电流为2A。作为一家第三方供应商,高通在MicroB接口基础上要继续提高充电功率就只有提高充电电压这一条路。

另外,高压快充方案实现起来相对容易,成本提升不明显,不用更换接口及充电线,终端客户较容易接受,符合高通作为“平台”的定位。 但高压快充方案存在一个严重的问题——发热。充电头输出的9V/12V电压进入手机后会被手机中的充电IC进行二次降压。

在降低电压提高电流的过程中,传统BUCK类充电IC的转换效率只有89%,能量的损耗会带来严重的发热(18W快充仅在充电IC上就会有1.96W的热损),且这种现象会随着充电功率的进一步提高变得更加严重。

2.低压快充

“充电五分钟,通话两小时”,2014年OPPO推出了VOOC闪充22.5W(5V/4.5A)低压快充技术。由于低压快充直接提高了充电电流,不需要进行电压的二次转换,因此很好的解决了高压快充发热的问题,也使得“边充边玩”成为了可能。

为了解决MicroB接口无法承接大电流、传统线材寄生电阻过大等的问题,OPPO专门为VOOC闪充定制了充电接口、充电线及充电头。

作为一家手机厂商,OPPO可以自由定义自家手机的配置,且不用考虑兼容性的问题。这也是OPPO有别于高通,推出低压快充方案的主要原因。

虽然低压快充很好的解决了高压快充二次降压带来的发热问题,但在继续提升充电功率这条路上低压快充也面临诸多挑战,不断提高的电流对流经的各类元器件都是一种考验,线材和接口的热损会变大,整个系统的功耗也会成倍增加,相应的定制成本也越来越高。

继续提高充电功率,高电压和高电流看来都是必须的,而高电压和高电流所面临的共同敌人就是发热,发热的一个主要原因就在于充电IC的热损,TI曾经做过计算,同样的热损下,效率增加2.5%,充电电流可以提升27%。因此提高充电IC效率就成为了快充进一步发展的关键。

3.电荷泵快充

电荷泵是一种无感式DC-DC转换器,他利用电容作为储能元件进行电压变换,可以使电压减半同时使电流增倍。且其转换效率可达到97%左右,远高于普通充电IC的89%。这使得电荷泵在60W充电时的热损比普通充电IC 18W充电时的热损还要低,如此低的发热解决了高压快充的瓶颈,使得超高功率快充成为了可能。

另外,标准的Type-C接口支持3A的电流,而在USB PD协议下可支持最高达100W的充电功率(20V/5A),Type-C接口的大规模普及也提高了电荷泵快充的兼容性。